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ABSTRACT
We show how to establish cryptographic keys in sensor net-
works where neither PKI nor a trusted third party exists. We
use a “web-of-trust” model, establishing “path” keys using
pairwise trust relationships between intermediaries sharing
preloaded keys. We first show how to defeat current schemes
with key foisting, a devastating novel attack not described in
the literature. Foisting compromises 90% of the path keys,
when only 10% of the sensors in the network are seized.
We then present a two-way path-key establishment scheme,
and a highest random weight based path-key establishment
scheme to deal with key foisting, using mGKE as an illus-
trative example. Our schemes reduce the probability of suc-
cessful key foisting to nearly zero even when 20% sensors
are seized. Its overhead is affordable, and its resilience is
excellent. We also discuss key foisting in general distributed
systems.

1. INTRODUCTION
Sensors are widely deployed in traffic control, supply-

chain management, theft prevention, patient monitor-
ing, personal security, driver’s licenses, passports, and
so on. They are now present in nearly every device we
encounter in our daily life. Sensors systems are evolv-
ing from networks of special-purpose devices deployed
on demand, to becoming ubiquitous in our environment.
This trend is exemplified by the Internet of Things

(IoT), a universal network of devices. The IoT is seen
[2, 24] as a self-configuring global network infrastructure
based on interoperable protocols, comprising physical
and virtual nodes with identities, attributes, and intel-
ligent interfaces, seamlessly integrated into a network.
Its nodes will participate in business, information and

.

social processes, interacting with themselves and the en-
vironment, and influencing the real world through ac-
tions, with or without human intervention.

1.1 Heterogeneity Complicates Security
Security is a big concern in such networks, but hetero-

geneity complicates the establishment of cryptographic
keys. In large sensor networks, including IoT, sensors
will have widely different configurations and hardware
and software capabilities. They will also belong to dif-
ferent administrative domains, each with its own poli-
cies and protocols. Heterogeneity means that no single
set of policies or protocols will work for all sensors.
Public-Key Infrastructures (PKIs) [1] can be an effec-

tive solution, but not all nodes in such a network may
support public key protocols, or even subscribe to PKIs.
For similar reasons, it is unlikely that any single third
party will be sufficiently trusted to mediate symmetric
pairwise key establishment between all nodes.

1.1.1 Sensor Groups and Webs of Trust
We note that it is natural to organize such large net-

works as groups, mirroring their structural, communi-
cation and trust relationships in the real world. Nodes
in each organizational unit (floor, building, factory, ve-
hicle, etc.) form a natural group for administrative pur-
poses. Nodes in one group are more likely to communi-
cate more with each other, and trust each other more
than they might trust nodes from a different unit.
The last point is especially important, when neither

PKI nor a globally trusted authority is available. Un-
der these constraints, we are forced to exploit the trust
relationships between nodes that naturally arise in a
group-based organization. Such trust can be formalized
as shared keys within and across groups at configuration
time. This serves as the foundation for the subsequent
dynamic establishment of trust (keys) between nodes.
A similar “web of trust” model is seen in PGP [22],

and widely used for decentralized public-key discovery.
Users maintain validated user-public key associations
in the form of personal “key rings”. if user Alice needs
Carol’s public key, and Bob is able to forward a key



he can cryptographically certify as Carol’s, Alice can
accept this key if she trusts Bob. When Alice only has
partial trust in a set of users, she can accept a key if it
is certified by a threshold number of users.

1.1.2 Assumptions and Threats
Our work does not use public keys, but does use

pair-wise trust relationships. We will first present key
foisting, a new attack that easily compromises web-of-
trust models, whether they use public keys or symmet-
ric keys. We will then describe a two-way key establish-
ment protocol that addresses this attack.
We will show how to establish dynamic symmetric

pairwise cryptographic keys in the scenario where trusted
authorities or PKI may be available to some nodes, but
not to all. Mutual trust must now be realized through
pairwise shared symmetric keys between sensors. How-
ever, sensors lack enough memory to store all O(n) pair-
wise keys for all other sensors in the system. Communi-
cation patterns are unknown in advance, so not all pairs
of communicating sensors can share preloaded keys.
We will assume that we are dealing with wireless sen-

sor networks (WSNs), since they are inherently insecure
[6, 7, 9, 14, 19, 20]. However, our work applies equally
to wired sensor networks. In Sec .9, we also discuss
pairwise key establishment in general distributed net-
works.

1.1.3 Sensor Groups, Associations, and Agents
Current group-based schemes [4, 10, 11, 16, 17, 19]

try to establish shared keys without trusted third par-
ties or PKI, but we will see that they have serious flaws.
Typically, a WSN with n nodes is organized into g
groups with γ nodes each [19]. Each node pair within
a group U is preloaded with a unique key. In Fig. 1a,
each of {a1, a2, a3, a4} holds a key for its neighbors in
U . Also, t > 1 node pairs across each group pair (U, V )
share preloaded keys. (a4, b3), (a2, b1) are such pairs in
Fig. 1a. Fig. 2 shows a 3-level group hierarchy. For a
2-level hierarchy with t agents across each group pair,
each node holds only γ − 1 preloaded intra-group keys,
and t(g − 1)/γ inter-group keys [19]. If g = γ =

√
n,

each node holds only O(
√
n)+O(t) keys, instead of the

O(n) pairwise keys required in a naive model.
Sensor pairs, such as (a1, a2) and (a4, b3) in Fig. 1a,

that share preloaded keys are called associated . A sen-
sor si ∈ U sharing a key with a sensor sj ∈ V is an agent
in U for V . Sensors not associated will establish path
keys using agents as intermediaries. Fig. 1b shows typ-
ical path-key establishment in current schemes. a3 es-
tablishes a path key with b2, by forwarding it via agents
a4 and b3. Hops ⟨a3, a4⟩, ⟨a4, b3⟩, and ⟨b3, b2⟩ forward
encrypted messages, possibly over multiple radio hops.
Decryption and re-encryption occurs at a4 and b3.
Preloaded keys are resilient, since they are compro-

mised only when one of their owners is. However, com-
promising an intermediary compromises a path key.

1.1.4 General Distributed System
In mGKE, it is guaranteed that there are at most

three cryptographic hops between two nodes not asso-
ciated (Fig. 1a), and cryptographic paths between them
are pre-defined. However, in a general distributed sys-
tem, cryptographic paths between two nodes may not
be pre-defined. There can be arbitrary number of cryp-
tographic paths between two nodes, and each path can
contain arbitrary number of cryptographic hops.

1.2 Key Stealing and Foisting Attacks
By seizing a sensor, the adversary gains both its pre-

loaded keys, as well as all path keys it mediates. Cur-
rent schemes [4, 5, 17, 19] recognize such attacks, which
we call key stealing (KS). As in Fig. 3, KS permits
eavesdropping and false data injection. Typically, KS
allows the adversary to compromise 30% of the path
keys by seizing about 10% of its sensors [17, 19].
In this paper, we introduce key foisting (KF), a novel

attack which can compromise 90% of the path keys by
seizing only 10% of the sensors. KF is devastating
because end-to-end authentication is impossible during
path-key establishment. Since there is no trusted third
party, path key establishment must rely on on trusted
intermediaries, who can only authenticate on a hop-by-
hop basis. End-to-end authentication requires end-to-
end keys, but the very purpose of path-key establishment
is to set up such keys between the end points.
In key foisting, the adversary uses seized intermedi-

aries to send fabricated path key establishment mes-
sages to fool other sensors to accept path keys generated
by him. Such attacks are devastating and hard to de-
tect. In current schemes, such as mGKE [19], PIKE [4],
GP [17], only about 1% of the communication channels
are secured via preloaded keys. The rest are secured
by path keys. The adversary can compromise 90% of
path keys by seizing a mere 10% of sensors. In effect,
no content transmitted in the network is secure.

1.3 Our Contributions
We propose a new two-way path-key establishment

scheme to address KF. This scheme allows recipients
to verify the correctness of path keys, while in ear-
lier schemes, recipients have no choice but to assume
that the path keys are correct. We apply the two-
way scheme in mGKE and the results show that the
resilience against KF is greatly improved. We also pro-
pose a highest random weight (HRW) based path key
establishment scheme. The resilience of our HRW based
scheme is comparable to our two-way scheme while its
communication overhead is much smaller.
We make the following contributions:



• We describe key foisting, and show that it is dev-
astating against schemes such as [4, 17, 19].

• We present a novel two-way (2W) scheme that de-
feats key foisting attacks. This scheme is compat-
ible with a variety of key management schemes.

• We present an HRW based scheme to deal with key
foisting, with less communication overhead than
the 2W scheme.

• We apply our 2W scheme and HRW based scheme
to mGKE [19] as an example, and present a rigor-
ous analysis of resilience. Similar analysis is pos-
sible for other schemes.

• We show how to perform key foisting in general
distributed networks. Our 2W scheme and HRW
based scheme can also be used to deal with key
foisting in the general model.

Group-based key management schemes have the fol-
lowing advantages. First, sensors in the same group are
more likely to communicate with each other. By giving
sensors in the same group preloaded pairwise keys, we
increase resilience to attacks and reduce overhead, since
path keys between neighbors now requires local com-
munication, unlike [5, 12]. Second, the two-way scheme
can be combined with multipath reinforcement to resist
hybrid attacks KF-KS (Section 7.1). Unlike [12] and
[5], it is easy to find multiple disjoint key establishment
paths between any two sensors in group-based schemes.
In this paper, related work appears in Sec. 2, and Sec.

3 presents an overview of key distribution, path key es-
tablishment, KS and KF attacks. Sec. 4 presents our
two-way scheme and its use in mGKE. Sec. 5 presents
our HRW based path key establishment scheme. Sec.
6 analyzes one- and two-way path key schemes. Sec.
7 analyzes replay attacks and hybrid KF-KS attacks
against our two-way scheme. Sec. 8 analyzes the re-
silience of HRW based key establishment scheme against
attacks. Sec. 9 analyzes key foisting in the general
model. Sec. 10 concludes the paper.

2. RELATED WORK
Group-based key management [4, 19, 17] operates in

three phases. In the predistribution phase, selected sen-
sors pairs are assigned shared keys before deployment.
In the key-setup phase, sensors are deployed, and dis-
cover neighbors and associations. In the path-key es-
tablishment phase, unassociated sensors establish path
keys as needed, using agents.
In [12], each sensor si randomly selects an m-subset

Si of a key pool K. Sensors si, sj can use any key
from Si ∩ Sj as their shared key. If Si ∩ Sj = ∅, they
can establish path keys via intermediaries. In the q-
composition scheme [5], two sensors may set up a key if
they share at least q preloaded keys. [5] generates an ID

pool and a pairwise key pool for IDs. A sensor randomly
selects an ID from the ID pool, and is preloaded with a
key matching its ID from the key pool.
Threshold-based key predistribution is proposed in

[11] and [16]. Blom’s key space scheme [3] is improved
in [11] using multiple key spaces. The polynomial-based
key-predistribution scheme is expanded in [16] using a
polynomial pool instead of a single polynomial. This
scheme uses a logical grid in which all sensors on a row
or columns share a key. Sensors on different rows or
columns establish path keys via agents. Another grid-
based scheme appears in [4]. GP [17] uses a grid, placing
sensors on each row or column into the same group.
Among the schemes for intra-group key predistribution,
using unique pairwise keys achieves the best resilience.
In the scheme of [19], sensors in the same group share

preloaded pairwise keys, and path keys established via
agents are very robust. Intra-group keys have perfect re-
silience against key stealing. KeEs [7] guarantees back-
ward and forward key security for key compromise at-
tacks, but fails catastrophically for node compromises.
The potential of multipath reinforcement [5] is not

realized by current schemes. They require disjoint cryp-
tographic paths to be found on-demand, an expensive
task. A cryptographic path may include many agents in
[5], multiplying the chances of compromise. [15] guaran-
tees paths with at most one agent, but requires flooding,
which is too expensive. Fault localization is the focus in
[25]. Other schemes [6, 20] try to mitigate the impact of
false data injection attacks on in-network aggregation.

3. ATTACK MODEL
We illustrate key predistribution and path key es-

tablishment using mGKE [19] as an example. mGKE
divides a sensor network into groups. All sensor pairs
within each group share pairwise keys (i.e., are asso-
ciated). For any two groups G1, G2, mGKE guaran-
tees that at least one si ∈ G1 and sj ∈ G2 share
preloaded keys. Such sensors in different groups but
sharing preloaded keys are called agents.
Fig. 1a shows two groups, each containing four sen-

sors. Real sensor networks may have hundreds of groups.
All sensors within each group share preloaded pairwise
keys. In Fig. 1a, (a2, b1) and (a4, b3) are the agent pairs
between these groups.
In Fig. 1b, sensors a3 and b2 establish a path key

via agents a4 and b3. Let Ka3b2 be the key between
nodes a3 and b2, and ⟨M∥Kaibi⟩ denote the message M
encrypted with Kaibi . To establish a path key with b2,
sensor a3 picks a random value Ka3b2 , and proceeds as
follows (headers omitted for simplicity).

1. a3 → a4 : ⟨(Ka3b2 , a3, b2, Gv)∥Ka3a4⟩
2. a4 → b3 : ⟨(Ka3b2 , a3, Gu, b2)∥Ka4b3⟩
3. b3 → b2 : ⟨(Ka3b2 , a3, Gu)∥Kb3b2⟩



Message (1), encrypted by a3, may be relayed by several
nodes before a4 receives and decrypts it. Thus, ⟨a3, a4⟩,
⟨a4, b3⟩, ⟨b3, b2⟩ are not radio hops, but “cryptographic”
hops between “active” encryption and decryption sites.
A series of cryptographically active nodes mediating
path keys, such as a3, a4, b3, b2 in Fig. 1b, is a keypath.
The path key Ka3b2 is known to the end points a3, b2,
but also to the agents a4, b3 that mediate the key. The
adversary can get the key by seizing a4 or b3.
We assume the Yao-Dolev model [8, 14]. The adver-

sary may record all traffic, but wishes to remain unde-
tected. Preloaded keys have perfect resilience [19], so
we focus on threats to path keys. Cryptanalysis yields
individual keys, but can be mitigated, as in [7]. We
assume node seizures, a greater threat. Seizure yields
all keys in a node, including path keys it mediates, and
permits insider attacks [14], such as the following.
In key stealing attacks, seized agents steal path keys

they mediate [4, 5, 17, 19]. In Fig. 4a, agent a3 is seized,
and steals the path keys it mediates. a2 is also seized,
and can steal keys if used as agent. Keys mediated by
a1 are safe until it is seized. Data injection is a different
attack, but also well-recognized [6, 20].
Redundancy can mitigate key stealing. A group pair

Gu, Gv may have t agent pairs, each defining a keypath
(Fig. 1a). A keypath is seized iff an agent within it is
seized. Two sensors si ∈ Gu and sj ∈ Gv can select
any one of these t keypaths for key establishment, with
probability 1

t . An adversary who seizes c keypaths can
seize this keypath with probability c

t . He succeeds with
high probability only for high c, giving some protection
against stealing.

3.1 Key Foisting: A Serious New Attack
Unfortunately, the literature has not recognized that

fraudulent path keys can be forced on victims by faked
path-key establishment requests from seized agents. Such
key foisting (KF) may be seen as an impersonation-
and-key-injection attack. Injection has been studied for
fake data [6, 20], but not path keys. Superficially simi-
lar, Sybil attacks [9, 18] overwhelm reputation systems
with fake identities.
The KF attack works as follows. Let Ksxsy denote

the preloaded key shared by some two nodes sx and sy.

1. Seize sa ∈ Gu. Let sa be an agent in Gu for
groups Gv1 , . . . Gvk . Identify the pairs (si, sj), si ∈
Gu, sj ∈ Gvl

, 1 ≤ l ≤ k served by sa.

2. Target such a pair (si, sj). Fabricate a key K∗sisj .

3. Fabricate a message that sj wishes to establish key
K∗sisj with si, encrypt message with Ksasi , and
send to si. Now, si is tricked into accepting K∗sisj .

4. Let sj belong to Gvl , and let sa be associated with
agent sb ∈ Gvl . Fabricate a message claiming si
wishes to establish key K∗sisj with sj . Encrypt this

message with Ksasb , and send it to sb.

5. sb accepts sa’s message, decrypts and re-encrypts
it with Ksbsj , and forwards it to sj , who is tricked
into believing that the request originated with si.

6. si and sj have been fooled into using K∗sjsj .

Foisting defeats agent redundancy. Seizing a single agent
sa suffices to foist fake path keys on all sensor pairs
across all groups sa serves. In Fig. 4b, agent a2 is
seized, and sends fake path-key establishment requests
to all sensor pairs it serves. This attack succeeds be-
cause authentication is hop-by-hop, not end-to-end.
Key foisting is feasible whenever path keys are estab-

lished [4, 17], not just in group-based methods. Our
analysis shows that current schemes are all vulnerable.

3.1.1 Foisting When Public Keys are Used
KF can be addressed if PKI is available, since sensors

can verify public-key certificates. However, as we have
noted, this assumption is not realistic in very large and
heterogeneous networks. KF is possible in public cryp-
tography based key establishment schemes like PGP,
when no certification authority is available. Let Alice
and Bob have public keys PA and PB , and Carol have
secret key SC . Alice and Bob both trust Carol. They
both know Carol’s public key, but not each other’s pub-
lic key. The adversary compromises the secure channel
between Alice and Bob as follows:

1. Seize Carol and her secret key SC .

2. Fabricate two public keys P ∗A and P ∗B .

3. Claim that Alice wishes to establish a secure chan-
nel with Bob, and send the message ⟨(P ∗A)∥SC⟩ to
Bob. Now, Bob is tricked into accepting P ∗A since
it is signed by SC .

4. Claim that Bob wishes to establish a secure chan-
nel with Alice, and send ⟨(P ∗B)∥SC⟩ to Alice, who
accepts P ∗B , since it is signed with SC .

The stage is now set for a man-in-the-middle attack.

3.2 Setting Realistic Goals
The following theorem helps clarify our goals.

Theorem 1. Key stealing cannot be prevented if path
keys are established using hop-by-hop intermediaries.

Proof: If intermediaries si1 , si2 , . . . , sir help establish
path key K, this key is known to each of them. The
adversary can steal K by seizing any of these nodes. 2
Key stealing cannot be prevented if PKI or a trusted

authority is not available. We will present a scheme
that prevents KF and strongly resists KS.

4. TWO-WAY PATH-KEY ESTABLISHMENT
We first briefly introduce mGKE[19], then present the

two-way path-key establishment and its use in mGKE.



4.1 mGKE
mGKE preloads a unique key into each pair of sensors

in the same group, so its intra-group resilience is perfect.
In addition, t sensors pairs from Gu×Gv are preloaded
with unique pairwise keys. Other sensors pairs use these
agents to establish path keys (Fig. 1a). Each group con-
tains ns sensors, and there are ng groups in the network.
Agents in Gu for Gv are selected using the formula

Fuv(i) = (t(v − 1) + i) mod ns, (1)

where Fuv(i) is ID of the ith agent in Gu for Gv, t
is the number of agents between groups. mGKE min-
imizes memory overhead at the sensors, since agent
IDs are found via Eqn. (1), rather than stored. Let
Auv = {a1uv, . . . atuv} denote this set of agents in Gu for
Gv.

4.2 Two-Way Key Establishment (2W)
We propose two-way key establishment (2W) to deal

with key foisting. All schemes to date have used one-
way key establishment (1W).
In the 1W scheme, let sj ∈ Gv receive the key-establ-

ishment request ⟨(Ksisj , Gu, si)∥Ksj ,a1
vu
⟩ from an agent

a1vu ∈ Gv, which is associated with a1uv ∈ Gu. It is now
impossible for sj to know whether Ksisj is legitimate
or was faked by a compromised a1uv or a1vu.
In contrast, in our 2W scheme, si creates and sends a

forward half K→sisj of the path key to sj , which responds
with a reverse half K←sisj via a disjoint path. si and sj
compute the path key as Ksisj = K→sisj ⊕K←sisj . They
can both trust Ksisj since each generated a part of it.

4.2.1 Forward Phase of 2W Key Establishment:
si ∈ Gu finds the agent set Auv for Gv via Eqn. (1),

and randomly selects an agent axuv. Next, si encrypts a
random K→sisj with Ksi,ax

uv
, sending it to axuv in message

⟨(K→sisj , Gv, si, sj)∥Ksi,ax
uv
⟩. axuv recoversK→sisj and sends

it encrypted to axvu as ⟨K→sisj , Gu, si, sj∥Kax
uv,a

x
vu
⟩. sj

recovers K→sisj , and begins the reverse phase.

4.2.2 Reverse Phase of 2W Key Establishment:
As shown in Fig. 1a, all keypaths between two sensors

are disjoint. To ensure disjoint keypaths, sj drops the
agents used in the forward phase, and picks an agent
ayvu from among the remaining t − 1 agents in Avu. sj
now picks a random values K←sisj representing its half of
the path key. sj sends this half to si, exactly mirroring
si’s actions in the forward phase, but using the agents
ayvu instead. The agent forwards K←sisj to its peer agent
in Gu, who forwards it to si. At the end of the reverse
phase, si and sj both haveK→sisj andK←sisj and generate
the path key Ksisj = K→sisj ⊕K←sisj . We require t ≥ 2.
Fig. 5 shows 2W path key establishment in mGKE.

To establish a path key with b2, sensor a3 picks a ran-

dom valueK→a3b2
, and proceeds as follows (message head-

ers are omitted for simplicity).

1. a3 → a4 : ⟨(K→a3b2
, a3, b2, Gv)∥Ka3a4

⟩

2. a4 → b3 : ⟨(K→a3b2
, a3, Gu, b2)∥Ka4b3⟩

3. b3 → b2 : ⟨(K→a3b2
, a3, Gu)∥Kb3b2⟩

4. b2 → b1 : ⟨(K←a3b2
, a3, b2, Gu)∥Kb1b2⟩

5. b1 → a2 : ⟨(K←a3b2
, b2, Gv, a3)∥Ka2b1⟩

6. a2 → a3 : ⟨(K←a3b2
, b2, Gv)∥Ka2a3⟩

4.3 k-Path Reinforcement (k-PR)
A great strength of a scheme like mGKE is its sup-

port for multipath reinforcement. mGKE with our 2W
scheme defeats foisting. However, as Theorem 1 shows,
key stealing is always possible. Using k-path reinforce-
ment [5] also adds resilience against key stealing. We
will find k-path reinforcement useful in increasing re-
silience to a mixed attack described in Section 7.
In k-path reinforcement [5], a key is cryptographically

divided into shares, and sent along k node-disjoint paths
to the destination, where it is reconstituted from the
shares. The adversary must compromise all k of these
paths to steal the key.
Using k-PR in mGKE is much more efficient than in

other schemes. Randomized methods like RKP [5] only
make probabilistic guarantees about network connec-
tivity, without assuring that node degrees are at least
k. Nodes of lower degree cannot use k-path key rein-
forcement. Even when k disjoint paths exist, they are
expensive to find.
In contrast, k-PR works well in mGKE, where key-

paths are all agent-disjoint (Fig. 1a), so it suffices to
pick any k keypaths. In mGKE, keypaths have two or
fewer agents, but paths in [5] may have any number of
them. Agents encrypt/decrypt messages, so k-PR secu-
rity drops as the number of agents per path grows in [5].
Finally, mGKE initiators can find agents from Eqn. (1),
and send path key messages via standard routing, but
initiators in [5] must themselves discover paths and se-
lect agents from them. Even worse, [15] uses broadcast-
ing and flooding to find agents. Group-based schemes
like mGKE have several desirable properties:

• k ≤ t agent-disjoint keypaths exist between any
two nodes, as t exist between any two groups.

• si ∈ Gu gets k agent-disjoint keypaths to sj ∈ Gv

just by selecting k agents from the t agents in Auv.

• Intra-group communication overhead is far smaller
than inter-group communication overhead [19].

In Sec. 7.2, we show how to use aggregation with k-
PR to greatly reduce the communication overhead.



5. HRW BASED PATH KEY ESTABLISHMENT
In this section, we first briefly introduce highest ran-

dom weight (HRW), then present HRW based multipath
key reinforcement ((k, I)-HPR).

5.1 Highest Random Weight
The Highest Random Weight algorithm was intro-

duced in [23] to achieve distributed consensus on object-
server mappings. It uses a hash function h : {0, 1}∗ →
Zp as follows. Given an object name oi and N servers
S = {α1, . . . , αN}, HRW first computes h(oi∥α1), . . .,
h(oi∥αN ) where ∥means concatenation, and selects n ≤
N servers αi1 , . . . , αin ⊆ S having the highest hash val-
ues to serve the object.
HRW ensures that each server set is selected to serve

a given object with the same probability. Each object
is always mapped to the same server set, and this map-
ping can be computed locally by each client. Most im-
portantly, HRW minimizes disruption in the event of
server failure. If a single server is to be chosen, we set
n = 1.

5.2 Highest Random Weight based path key
establishment

We state how to use HRW in path key establishment.
Let the si ∈ Gu denote the initiator and sj ∈ Gv de-
note the recipient. Let {(a1uv, a1vu), . . . , (atuv, atvu)} de-
note the t agent pairs between Gu and Gv. The k agent
pairs used to establish a path key between si and sj
are selected as follows. si first calculates the hash value
h(aluv||alvu) for each agent pair, and select the k pairs
with the highest hash values to establish the path key.

Let {(a(1)uv , a
(1)
vu ), ..., (a

(k)
uv , a

(k)
vu )} denote the k agent pairs

selected. si generates the k shares of the path keyKsisj ,
and uses k-PR to send the k shares to sj .
sj uses HRW to verify Ksisj . sj calculates the hash

value for each agent pair participated in the path key
establishment, and checks whether the k agent pairs are
those with highest hash values. If so, sj accepts Ksisj ,
otherwise rejects it.
HRW based path key establishment can improve the

resilience against KF. Unless the adversary seizes the
k agent pairs with the highest random values, Ksisj is
safe since sj will reject Ksisj not sent by these k agent
pairs. Meanwhile, its communication overhead is just
half of that of 2W k-PR.

5.3 Fault Tolerant
Agents may not always be available due to physical

damage or power outage. We use (k, I) secret sharing
scheme in path key establishment to mitigate the affec-
tion of faulty agents. In (k, I) secret sharing, a secret
is divided into I pieces, and can be recovered by any
k in I pieces. In path key establishment, I agent pairs
with the highest hash values are selected to establish

the path key for si and sj . si divides the path key us-
ing (k, I) secret sharing, and sends each piece via an
agent pair to sj . In the verification phase, si accepts
the key if the path key is sent by k agent pairs in the
top I agent pairs with highest hash values.

6. ANALYSIS OF RESILIENCE
We now show how devastating the KF attack is by

analyzing the resilience of mGKE with 1W against KF.
When a node is seized, all its keys are lost. Since it
may have mediated path keys, keys for unseized nodes
may be affected. The resilience of a path key scheme is
hence judged [19] by the rate at which keys (or keypaths)
between unseized sensors are lost, as sensors are seized.
Let mGKE (1W k-PR) denote mGKE using 1W path

key establishment and k-path key reinforcement, and
mGKE (2W k-PR) denote mGKE using 2W path key
establishment and k-path key reinforcement. In mGKE
(2W k-PR), k keypaths are used by both the initiator
and the recipient, so that 2k keypaths are used in all for
path key establishment. In k-path reinforcement [5], a
path key is divided into k shares. The initiator sends
the k shares via k agent-disjoint keypaths. To steal the
path key, the adversary must now seize an agent in each
path. k-path key reinforcement improves resilience at
the cost of communication overhead.

Definition 1. A set of keypaths {p1 . . . , pk} used in
k-path reinforcement is a k-keypath.

To compare the resilience against KF and KS, we
first analyze the resilience of mGKE (1W k-PR) against
both attacks. We will show that the resilience against
KF is very much poorer than the resilience against KS.
Three cases arise when Ksisj is a path key for si ∈

Gu, sj ∈ Gv:

1. neither si nor sj is an agent for pair (Gu, Gv),

2. one of si or sj is an agent for (Gu, Gv), or

3. both si and sj are agents for (Gu, Gv).

Let Ksisj denote the event that Ksisj is a path key and
let Kq

ij denote that Ksisj is a path key matching case

q above. Let c⟨ij⟩ be the event that c nodes are seized
in all, but neither si nor sj is. Let b denote that b

of 2t agents for (Gu, Gv) are seized. Let K̂sisj denote

that the key Ksisj between si and sj is stolen. Let b
⟨ij⟩

denote that b agents are seized, but not si or sj . We
are interested in determining

Pr
[
K̂sisj | c⟨ij⟩ ∧Ksisj

]
=

3∑
q=1

2t∑
b=1

(
PK̂|bPb|cPq

)
(2)

where PK̂|b = Pr[K̂sisj | b ∧ c⟨ij⟩ ∧Kq
ij], Pq = Pr[Kq

ij],

and Pb|c = Pr[b | c⟨ij⟩ ∧Kq
ij].



Each group pair has t agent pairs, and n2
s − t path

keys. Of these, (ns−t)2 path keys are of type-1, 2t(ns−
t) of type-2, and t(t− 1) of type-3. Clearly, Pr[K1

sisj
] =

(ns−t)2
n2
s−t

,Pr[K2
sisj

] = 2t(ns−t)
n2
s−t

, and Pr[K3
sisj

] = t(t−1)
n2
s−t

.

For simplicity, we only analyze the resilience of type-1
path keys. The resilience of type-2 and type-3 path keys
can be easily obtained using the same method.

6.1 mGKE (1W k-PR) Key-Stealing Resilience
With Eqn. (2) in mind, the probability of event b

with c seized sensors, excluding si and sj is found as
follows. For type-1 path keys, we can seize b of 2t agents
in

(
2t
b

)
ways, and seize c − b sensors from n sensors,

except for si, sj and 2t agents, in
(
n−2−2t

c−b
)
ways. Hence,

Pr
[
b | c⟨ij⟩ ∧K1

sisj

]
=

(
n−2−2t

c−b
)(

2t
b

)(
n
c

) (3)

For type-1 path keys, if b ≤ k − 1, the adversary can
steal no keypaths. If b ≥ 2t− 1, all keypaths are stolen.
Define the ranges R1 = [0, k− 1], R2 = [k, 2(t− 1)], and
R3 = [2t− 1, 2t]. Now,

Pr
[
K̂sisj | b⟨ij⟩ ∧K1

sisj

]
=

 0 b ∈ R1

g1 b ∈ R2

1 b ∈ R3

(4)

g1 =

min(t,b)∑
l=⌈ b2 ⌉

(
t

b−l
)(

t−b+l
2l−b

)(
l
k

)(
2t
b

)(
t
k

) · 22l−b (5)

In Eqn. (5),
(
l
k

)
/
(
t
k

)
is the probability that the k-

keypath used by si and sj is seized, when l keypaths

are seized.
( t
b−l)(

t−b+l
2l−b )

(2tb )
× 22l−b is the probability that l

keypaths are seized, when b agents are seized.
Eqns. (3–5) give the probabilities Eqn. (2) needs for

type-1 path keys. Analysis for type-2 and type-3 keys is
similar. Our analysis matches simulation, and resilience
is excellent (Fig. 6). We simulate a sensor network with
10000 nodes under the mGKE (1W k-PR) scheme. Let
c denote the number seized sensors, Nc denote the to-
tal number of path keys of n − c unseized sensors and
Nf

c denote the number of compromised path key when

c sensors are seized. We use the ratio
Nf

c

Nc
as the prob-

ability of successful key stealing for various c. All sim-
ulations in this paper were conducted in this manner.
With even 20% sensors seized, the chances that a given
pathkey is stolen are under 5% for 3-PR, and under
1% for 5-PR. We see that k-path key reinforcement is
very effective in dealing with KS. k-PR enhances the
resilience to KS for methods other than mGKE as well
[19, 4, 17]. However, we will now show that no 1W
scheme can resist KF, despite the use of k-PR.

6.2 mGKE (1W k-PR) Key-Foisting Resilience

We now present the first-ever analysis of foisting. We
show that all 1W schemes [19, 4, 17] perform poorly
against KF.
For type-1 path keys,

Pr
[
K̂sisj | b⟨ij⟩ ∧K1

sisj

]
=

{
0 0 ≤ b ≤ k − 1
g2 k ≤ b ≤ 2t

(6)

g2 =

min(b,t)∑
l=max(⌈ b2 ⌉,k)

22l−b
(

t
b−l

)(
t−b+l
2l−b

)(
2t
b

) (7)

In Eqns. (6, 7), all keypaths are secure when b ≤ k− 1.
Otherwise, we can choose l agent pairs from 2t agents in
22l−b

(
t

b−l
)(

t−b+l
2l−b

)
/
(
2t
b

)
ways. Compared with Eqn. (4),

( l
k)
(t
k)

is missing because all path keys can be foisted with

any k keypaths seized.
We now have the probabilities needed in Eqn. (2).

Eqns. (6) yield PK̂|b, and Eqns. (3), (4) yield Pq and

Pb|c. Fig. 7 shows the probability that a given path key
in mGKE (1W) has in fact been foisted, as per Eqns.
(6–7) and simulation, for k = 1, 10, 20. Our analysis
matches simulations perfectly. Comparing the resilience
shown in Fig. 6 and Fig. 7, it is clear that KF is much
more devastating than KS and simply using multipath
reinforcement cannot improve the resilience much.
An analysis of PIKE, GP to stealing is given in [19],

but no analysis for foisting has appeared. Fig. 8 shows
our simulation results of foisting resilience for PIKE-2D
and GP (unique pairwise keys), with ng = ns = 100,
t = 10. PIKE’s good showing is meaningless, given its
poor resilience to stealing [19]. GP performs the worst,
as its groups share too many agents.

6.3 mGKE (2W 1-PR) Resilience to Foisting
We analyze mGKE (2W 1-PR) performance, based on
mGKE (1W). The following simple lemma is useful.

Lemma 1. A keypath between Gu and Gv is compro-
mised either in both directions, or not at all.

Proof: A keypath is compromised iff one or more agents
in it are. Agents are indifferent to message direction. �
We next show that mGKE (2W 1-PR) is immune to

foisting.

Theorem 2. mGKE (2W k-PR) is immune to key
foisting if k > 0, no matter how many nodes are seized.

Proof: We assume that the adversary has knowledge of
data local to any node if and only if he has seized the
node. We yield him the maximum advantage, setting
k = 1. Now, let him seize all sensors in Gu and Gv

except si, sj .
Assume the adversary foists a key K∗sisj on si and

sj , so that neither si nor sj functioned as initiator. By



the 2W algorithm (Sec. 4.2), si must have received a
share f∗i from the adversary, generated a random gi, and
computed a key locally as Ki

sisj = f∗i ⊕gi. Similarly, sj
must have computed Kj

sisj = f∗j ⊕ gj , using the locally
generated random value gj . Since the adversary foisted
the key K∗sisj successfully, Ki

sisj = Kj
sisj = K∗sisj .

Since the adversary knows K∗sisj , f
∗
i and f∗j , he can

compute gi = K∗sisj ⊕f∗i and gj = K∗sisj ⊕f∗j . However,
gi and gj were randomly generated local values, which
he can access only if he controls both si and sj . This
contradicts our assumption that he controls neither. �
To make mGKE immune to KF, it suffices to use 2W

path key establishment. Multipath key reinforcement is
not required to guard against foisting. Other schemes,
such as PIKE and GP can also adopt the 2W path key
establishment to guard against KF.

7. REPLAYS, KEY FOISTING, AND MAN-
IN-THE-MIDDLE ATTACKS

Current 1W schemes do not guarantee message fresh-
ness, and are vulnerable to replays. Let a path keyKsisj

established at time t1 over k keypaths be compromised
at time t2 > t1. In a 1W scheme, recording the inter-
group path-key establishment messages at time t1 al-
lows the adversary to replay them at time t3 ≥ t2, and
foist Ksisj on sj .

Theorem 3. mGKE (2W) is immune to replays.

Proof: Exactly as for Theorem 2. �
Keys cannot be directly foisted in 2W schemes since

the adversary cannot control the key half generated by
receiver sj . KS attacks remain viable (see Theorem 1),
as is the following hybrid attack, when a very large num-
ber of nodes are compromised. mGKE (2W k-PR) con-
tinues to show excellent resilience.

7.1 Hybrid (KF-KS) Attacks
The adversary can combine KF with KS to compro-

mise security, by creating separate keys with a pair of
sensors and interposing himself in between. He must
control enough agents in each group to control all key
paths with high probability. We will show that KF-KS
is no worse for mGKE (2W k-PR) than simple KS.
In Fig. 9, the adversary has seized agents a2, a3 ∈ Gu,

b1 ∈ Gv, and attacks si ∈ Gu and sj ∈ Gv as follows.

1. Fabricate a forward half K∗→sjsi . Fabricate a mes-
sage that sj wishes to establish key with si. En-
crypt message with Ka3si , and send to si. Now, si
is tricked into accepting K∗→sjsi .

2. Fabricate another forward half K∗→sisj . Fabricate a
message that si wishes to establish key with sj .
Encrypt message with Ka3b3 , and send to b3.

3. b3 will forward the forward half to sj . Now, sj is
tricked into accepting K∗→sisj .

4. si generates its reverse half K←sjsi and sends it to
s2 via agent a2. If the adversary has seized a2, he
can steal this reverse half, and also suppress the
message. He now computes the path key K∗→sjsi ⊕
K←sjsi , which is used by si as the path key for sj .

5. sj generates its reverse half: K←sisj and sends it to
si via agent b1. If the adversary has seized b1, he
can steal this reverse half and also suppress the
message. He now computes the path key K∗→sisj ⊕
K←sisj , which is used by sj as the path key for si.

The adversary can now mount a Man-in-the-Middle at-
tack between si and sj :

1. Send a false message ⟨(M1)∥K∗→sisj ⊕K←sisj ⟩ to sj .
M1 is encrypted with a key that sj accepts, so sj
will accept this message.

2. When sj responds to si with ⟨(M2)∥K∗→sisj⊕K←sisj ⟩,
seize and suppress this message. Now decrypt the
message, tamper with it, encrypt it using si’s key
⟨(M ′2)∥K∗→sjsi ⊕K←sjsi⟩, and send the message to si.
si will also accept the message.

We will now show that KF-KS is no more effective
against mGKE (2W k-PR) than a simple KS attack.
In mGKE (2W k-PR), k keypaths are used by both

the initiator and the recipient, so that 2k keypaths are
used in all. With l keypaths seized, the chances that

all shares of ri and rj are stolen are

[
(l−k

k )
(t−k

k )

]2
. Let M̂

denote success of a KF-KS attack. For type-1 keys,

Pr
[
M̂ | b⟨ij⟩ ∧K1

sisj

]
=

{
0 b ∈ [0, 2k − 1]
g3 b ∈ [2k, 2t]

, (8)

g3 =

min(t,b)∑
l=max(2k,⌈ b2 ⌉)

22l−b
(
t
l

)(
l

2l−b
)(

2t
b

) [(
l−k
k

)(
t−k
k

)]2

. (9)

Analysis of type-2 and 3 keys is similar.
We get the resilience by using P

M̂ |b in Eqn. (8) to

replace PK̂|b in Equation 2. Fig. 10 shows mGKE (2W

k-PR)’s excellent resilience to KF-KS attacks, which
succeed less than 12% of the time even with k = 1
and 20% of the sensors seized. mGKE (2W k-PR) has
nearly perfect resilience against KF-KS even with k ≥
3 and 20% of sensors seized. It outperforms the original
multipath reinforcement significantly (Fig. 7, 8). KF-
KS is no more effective thanKS (Fig. 6). Fig. 11 shows
the resilience of mGKE (2W k-PR) against KF-KS in
different settings of t and k.

7.2 Aggregation to Reduce k-PR Overhead
As shown in Fig. 10, the resilience of mGKE (2W 1-

PR) against KF-KS is excellent. However, we can use
k-PR to improve the resilience if a higher standard of



security is required, say, that KF-KS succeed less than
5% of the time with 20% sensors seized.
Unfortunately, the default implementation of k-PR

incurs k times the communication overhead of 1-PR. We
now present k-PR with Aggregation, which makes k-PR
efficient in mGKE. We can drop the KF-KS ’s success
rate below 1% in mGKE, at little or no additional cost,
by choosing k ≥ 3.
In k-PR with aggregation, instead of sending each

share from Gu to Gv as a separate inter-group message,
we collect all shares at one agent in Gu, and send them
to Gv in one inter-group message (Fig. 12b).
si ∈ Gu finds the agent set Auv for Gv via Eqn. (1)

and selects k agents {a1uv, a2uv, ..., akuv} at random. Next,
si generates k random shares [K→sisj\1], . . . , [K

→
sisj\k] so

the “forward” half is K→sisj = [K→sisj\1]⊕ . . .⊕ [K→sisj\k].
Let message ⟨[K→sisj\p]∥Ksi,a

p
uv
⟩ be denoted by Lup, and

⟨[K→sisj\p]∥Kap
uva

p
vu
⟩ be denoted by Ip. si encrypts and

sends all shares to the first agent a1uv in a single message.

si → a1uv : ⟨(Lu1, Lu2, . . . , Luk, Gv, si, sj ,

a2uv, a
3
uv, . . . , a

k
uv

)
∥Ksi,a1

uv
⟩

a1uv decrypts this, extracts [K→sisj\1], re-encrypting it to

get I1. It now sends the following message to a2uv

a1uv → a2uv : ⟨(I1, Lu2, . . . , Luk, Gv, si, sj ,

a1vu, a
3
uv, . . . , a

k
uv)∥Ka1

uva
2
uv
⟩

Each agent apuv repeats this process, forwarding it to the
next agent in the list as an intra-group message. The
last agent akuv sends all shares to its peer akvu in Gv:

akuv → akvu : ⟨(I1, I2, . . . , Ik, Gu, si, sj ,

a1vu, a
2
vu, . . . , a

k−1
vu )∥Kak

uva
k
vu
⟩

Agent akvu now extracts [K→sisj\k], re-encrypts it with
Kak

vusj
to get Lvk, and sends Lvk, I1, I2, . . . , Ik−1 to

ak−1vu , mirroring the forwarding in Gu. Such forward-
ing continues within Gv, until the message:

a1vu → sj : ⟨(Lv1, Lv2, . . . , Lvk, Gu, si, sj ,

a2vu, a
3
vu, . . . , a

k
vu

)
∥Ka1

vusj
⟩.

sj recovers all shares, computes K→sisj , and begins the
reverse phase which mirrors the forward phase.

7.2.1 Energy Savings of k-PR with Aggregation
Consider a D×D region with ng groups. A group has

extent d×d, for d = D√
ng

. The average distance between

two random points in a unit square [13] is about 0.52, so
the average distance between two sensors in the network
is δ ≈ 0.52D, and δuu ≈ 0.52d if they are both in Gu.
Let δuv be the average distance between a sensor in
Gu and one in Gv. Let puu be the probability that two
randomly chosen sensors are in the same group, and puv
be the probability that they are not. Clearly, 0.52D =

puu0.52d + puvδuv. Using puu = 1
ng

, puv =
ng−1
ng

, we

obtain

δuv =
0.52n

3
2
g − 0.52

ng − 1
d (10)

Let the expected number of hops to transmit a message
a unit distance be γ. The expected hop count between
two sensors is hu = δuu

γ if they are in the same group

and huv = δuv

γ otherwise. Let e(L) be the expected
energy consumed per hop to send and receive a packet of
length L. A length-L message from si ∈ Gu to sj ∈ Gv,
involves two intra-group messages and one inter-group
message, and consumes energy e(L)(2hu + huv). The
expected energy consumed in establishing a path key
between si and sj in the 2W and 2WA schemes is

E2W(Gu, Gv) = e(L)2k(2hu + huv)

E2WA(Gu, Gv) = e(kL)(4khu + 2huv).

Substituting for hu, huv, δu, δuv, and d, we have

E2WA(Gu, Gv)

E2W(Gu, Gv)
=

e(kL)(2kng + n
3
2
g − 2k − 1)

e(L)(2kng + kn
3
2
g − 3k)

(11)

Each message in the 2W scheme contains a share, two
sensor IDs and a group id, so that L ≤ 30 bytes, and

kL ≤ 300 bytes even for k = 10. We know e(L)
e(kL) ≈ 1

when kL ≤ 300 bytes [21]. If ng = 100,

E2WA(Gu, Gv)

E2W(Gu, Gv)
=

(198k + 999)

1197k
(12)

The E2WA/E2W ratio is 0.58 for k = 2, and 0.33 for
k = 5. Aggregation is clearly effective. Surprisingly,
2WA can be more efficient than the very insecure 1W
schemes. Since E2W/E1W = 2, the E2WA/E1W ratio is
1.16 for k = 2, and 0.66 for k = 5. Our 2WA method
provides both strong security and efficiency at the same
time.

8. RESILIENCE OF HPR

In this section, we give the formal analysis of the
resilience of (k, I)-HPR against KF. KF-KS does not
work here since there is no reverse phase in (k, I)-HPR.

8.1 Resilience against KF

We use mGKE as the key predistribution scheme, and
use (k, I)-HPR as the path key establishment scheme.
We analyze the probability that a path key Kij of two
sensors si ∈ Gu, sj ∈ Gv is compromised by KF attack
when c sensors are captured and f sensors are faulty in
the network.
We first derive the probability that Ksisj is compro-

mised in (k, I)-HPR. For simplicity, we only consider

type-1 path keys. Let K̂sisj be the event that Ksisj is

compromised, c⟨ij⟩ be the event that c nodes are seized



in all, but neither si nor sj is. Let lc be the event that
lc agent pairs are captured between Gu and Gv. Let b
be the event that b in 2t agents are captured between
Gu and Gv. The probability that Ksisj is compromised
when c sensors are captured is:

Pr[K̂sisj |c⟨ij⟩] =
∑
lc

Pr[K̂sisj |lc] · Pr[lc|c⟨ij⟩] (13)

=
∑
lc

∑
b

Pr[K̂sisj |lc] · Pr[lc|b] · Pr[b|c⟨ij⟩]

(14)

We derive each term in Formula 14. When (k, I)-
HPR is used, the probability that Kij is compromised
when lc agent pairs are seized between Gu and Gv is

Pr[K̂sisj |lc] =


0 0 ≤ lc < k∑min(lc,I)

i=k (Ii)
( t
lc
)

k ≤ lc < t− I + k

1 t− I + k ≤ lc ≤ t

(15)

For the second term in Formula 14, we have

Pr[lc|b] =
(

t
b−lc

)(
t−b+l
2lc−b

)(
2t
b

) × 22lc−b ⌈ b
2
⌉ ≤ lc ≤ min(b, t)

(16)

The third term in Formula 14, we have

Pr[b | c⟨ij⟩] =
(
n−2−2t

c−b
)(

2t
b

)(
n
c

) (17)

Fig. 13 shows the resilience of (k, I)-HPR against
KF. From Fig. 13a and Fig 13b, we can see that the
resilience is reduced by increasing I as we expect. In
Fig. 13a, 13c and 13d, we set I to half of t. We can
see that by increasing t and k, the resilience is also
improved. We can see the resilience of (k, I)-HPR is
comparable to 2W k-PR, and the communication over-
head of (k, I)-HPR is smaller than 2W k-PR. KF can
only compromise less than 1% path keys by carefully se-
lecting proper t, k and I when 20% sensors are seized.

8.2 Resilience against Faulty Sensors
Now we begin to analyze the affection of faulty sen-

sors to the path key establishment. We try to derive
the probability that si and sj cannot establish a path
key when f sensors are faulty in the network.
Faulty sensors can affect path key establishment since

although we loose the threshold for agent pair selection
from top k agent pairs to any k agent pairs in top I
agent pairs, it is still possible that more than I − k + 1
agent pairs are faulty in the top I agent pairs.
Let Kij denote the event that si and sj cannot estab-

lish path keys because of faulty sensors. Let f ⟨ij⟩ be the

event that f nodes are faulty in all, but neither si nor
sj is. Let lf be the event that lf agent pairs are faulty
between Gu and Gv. Let bf be the event that bf in 2t
agents are faulty between Gu and Gv. We have

Pr
[
Kij|

]
=

∑
lf

Pr
[
Kij|lf

]
· Pr[lf |f ⟨ij⟩] (18)

=
∑
lf

∑
bf

Pr
[
Kij|lf

]
Pr[lf |bf ] Pr[bf |f ⟨ij⟩]

(19)

The first term in Formula 19 is

Pr
[
Kij|lf

]
=


0 0 ≤ lf < I − k + 1∑min(lf ,I)

i=I−k+1 (
I
i)

( t
lf
)

I − k + 1 ≤ lc ≤ t− k

1 t− k + 1 ≤ lc ≤ t
(20)

The second term in Formula 19 is

Pr[lf |bf ] = 22lf−bf

(
t
lf

)(
lf

bf−lf

)(
2t
bf

) ⌈bf
2
⌉ ≤ lf ≤ min(bf , t)

(21)

The third term in Formula 19 is

Pr[bf |f ⟨ij⟩] =
(
n−2−2t
f−b

)(
2t
b

)(
n
f

) (22)

Fig. 14 shows the resilience of (k, I)-HPR against
faulty sensors. From Fig. 14a and Fig 14b, we can see
that the resilience is improved by increasing I. In Fig.
14a, 14c and 14d, we set I to half of t. We can see that
by increasing t and k, the resilience is also improved.
when 20% sensors are faulty, only less than 1% path key
establishments are affected by carefully selecting proper
t, k and I. From these figures, we can see that with
I increasing, our scheme has better resilience against
faulty sensors. However, larger I means worse resilience
against KF, which is not what we want.

9. KEY FOISTING IN THE GENERAL MODEL
We describe how to performKF in general distributed

systems. In a distributed system containing n nodes
{s1, s2, . . . , sn}, the n nodes form a network, and can
send messages to other nodes. There is also an adver-
sary with the ability of eavesdropping messages trans-
mitted between any two nodes. We assume that no
central authority is available, but some node pairs have
pre-defined cryptographic channels to protect commu-
nication security, and other node pairs can only use
the pre-defined cryptographic channels to establish new
cryptographic channels. Without lose of generality, we
assume that these cryptographic channels are protected
by secrets used in message encryption and decryption.
We do not restrict secrets must be symmetric keys here.



If node si and sj have a pre-defined cryptographic chan-
nel, they share a secret Ksisj only known by them used
in message encryption and decryption.
Nodes not having preloaded secrets may need to es-

tablish path secrets for secure communication. In a
system without central authority, these nodes can use
existing cryptographic channels to establish path se-
crets. One difference between general distributed sys-
tems and mGKE based sensor networks is that cryp-
tographic paths between two nodes are not pre-defined
in general distributed systems. There can be arbitrary
number of cryptographic paths between two nodes, and
each path can contain arbitrary number of hops. We
assume that si and sj know all cryptographic paths to
each other, and agree on these paths used in path secret
establishment. How to make the agreement is not our
focus in this paper.
We first describe one-way (1W) secret establishment

scheme used in the general model. Say two nodes si,
sj want to establish a secret Ksisj for secure communi-
cation, and they share an existing cryptographic path
{si → si1 → . . . ,→ sim → sj}. This path can be used
to establish the path secretKsisj , where (si, si1) share a
preloaded secretKsisi1

, {(sil , sil+1
)}l=1:m−1 share preloaded

secrets {Ksilsil+1
}l=1:m−1, and (sim , sj) share preloaded

secret Ksimsj . Kij is established as follows:

1. si → si1 : ⟨(Ksisj , si, si2 , si3 , . . . , sj)∥Ksisi1
⟩

2. sil → sil+1
: ⟨(Ksisj , si, sil+2,...,sj )∥Ksilsil+1

⟩

3. sim → sj : ⟨(Ksisj , si)∥Ksimsj ⟩

The problem of this scheme is that if one node on the
path is compromised, then Ksisj is compromised by key
stealing attack. The adversary can also use KF to force
si sj to accept a fabricated Ksisj .

9.1 Key Foisting
KF works in the general model as follows.

1. Seize sa, and find all cryptographic paths contain-
ing sa.

2. Target such a pair (si, sj), where si, sa are on
a cryptographic path, and sj , sa are on another
path. Fabricate a secret K∗sisj .

3. Fabricate a message that sj wishes to establish
secretK∗sisj with si, encrypt the message, and send
to si via the cryptographic path connecting sa and
si. Now, si is tricked into accepting K∗sisj .

4. Fabricate a message claiming si wishes to establish
secret K∗sisj with sj via the cryptographic path
connecting sa and sj . Encrypt this message, and
send it to sj . sj is tricked into believing that the
request originated with si.

5. si and sj have been fooled into using K∗sjsj .

9.2 Two-Way Key Establishment
Two-way secret establishment (2W) can also be used

to deal with KF in the general model, and is described
as follows.

9.2.1 Forward Phase of 2W Key Establishment:
si selects a cryptographic path {si → si1 → . . . ,→

sim → sj}. Next, si encrypts a random K→sisj with
Ksisi1

, sending it to si1 in message

⟨(K→sisj , si, si1 , . . . , simsj)∥Ksisi1
⟩.

Here secret Ksisi1
is used in encryption.

si1 recovers K→sisj and sends it encrypted to si2 as

⟨K→sisj , Gu, si, si2 , . . . , sim , sj∥Ksi1si2
⟩.

At last, sj recovers K→sisj from sim , and begins the re-
verse phase.

9.2.2 Reverse Phase of 2W Key Establishment:
In the reverse phase, sj selects another cryptographic

path {sj → sj1 → . . . ,→ sjm′ → si} to si. sj now picks
a random values K←sisj representing its half of the path
secret. sj sends this half to si, exactly mirroring si’s
actions in the forward phase, but using the nodes on
the new path instead.
At the end of the reverse phase, si and sj both have

K→sisj and K←sisj and generate the path secret Ksisj =
K→sisj ⊕K←sisj .

k-Path Reinforcement (k-PR) can be used to improve
security in the general model.

9.3 HRW based Key Establishment
We state how to use HRW in the general model.

si first calculates the hash value h(si1 ||si2 || . . . sim) for
each cryptographic path between si and sj , and select
the k paths with the highest hash values to establish the
path secret. The input to the hash function is the con-
catenation of all node IDs on the cryptographic path.
The k paths with the highest random weights are se-
lected. si generates the k shares of the path secret
Ksisj , and uses k-PR to send the k shares to sj via
the k paths selected. Each share is send to sj via a
different path.
sj uses HRW to verify Ksisj . sj calculates the hash

value for each cryptographic path participated in the
path secret establishment, and checks whether the k
paths are those with highest hash values. If so, sj ac-
cepts Ksisj , otherwise rejects it.
(k, I)-HPR can also be used here to improve the re-

silience against faulty nodes.

9.4 Security Analysis

9.4.1 Two-Way Scheme



KF can be perfectly addressed by two-way scheme.
We first prove the following theorem.

Theorem 4. 2W k-PR path key establishment scheme
is immune to key foisting if k > 0, no matter how many
nodes are seized, in the general model.

Proof: Exactly as for Theorem 2. �

9.4.2 HRW based Key Establishment
KF attack can be efficiently addressed by (k, I)−HPR.

We analyze the resilience of (k, I)−HPR against KF.
We analyze the probability that a path secret Ksisj of
two nodes si sj is compromised by KF attack when lc
in t cryptographic paths are compromised by the adver-
sary. We have

Pr[K̂sisj |lc] =


0 0 ≤ lc < k∑min(lc,I)

i=k (Ii)
( t
lc
)

k ≤ lc < t− I + k

1 t− I + k ≤ lc ≤ t

(23)

In Formula. 23, when the adversary compromises fewer
than k cryptographic paths, he cannot compromiseKsisj .
When the adversary compromises k ≤ lc < t − I + k

cryptographic paths, he has the probability
∑min(lc,I)

i=k (Ii)
( t
lc
)

to have si accept his Ksisj , and he has the same proba-
bility to have sj accepts the secret. When the adversary
compromises more than t−I+k paths, he will have both
si, sj accepts his Ksisj with probability 1.

10. CONCLUSION
We have described key foisting, a new attack on sen-
sor systems that has not so far been recognized in the
literature, and showed how current schemes fail catas-
trophically against it. We then presented two-way key
establishment and HRW based key establishment which
are practical in mGKE, and confer excellent resilience
against foisting and related attacks, including man-in-
the-middle attacks. We provided a detailed analysis of
these attacks, and verified the accuracy of our analy-
sis with detailed simulations. Our analysis and simula-
tions confirm that mGKE (2W) has excellent resilience
against both key stealing and foisting attacks. The two-
way scheme and (k, I)-HPR have very low overhead
compared even with the insecure one-way scheme. Our
future work will include reducing the overheads even
further, and implementing these schemes on real sensor
networks.
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(a) Group based sensor net-
work
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(b) Path key establishment

Figure 1: Path key establishment. Dotted lines
(Fig. 1a) show associations, and solid lines (Fig.
1b) show path key establishment messages. a3 ini-
tiates path key establishment with b2, via interme-
diaries a4 and b3.

Figure 2: Hierarchy of sensor groups
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Figure 3: False data injection. Fig. 3a shows that
sensor s1 shares path keys with s2, s3, s4. These
have been mediated by s5. The adversary seizes
s5, and gains these path keys. In Fig. 3b, he feeds
false data to s1 by impersonating s2, s3 and s4.
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Figure 4: Key stealing and foisting. ⊗: seized
agents.
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(c) t = 20 I = 10
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(d) t = 40 I = 20

Figure 13: Resilience against KF
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(c) t = 20 I = 10
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Figure 14: Fraction of sensors cannot establish path keys due to faulty sensors



Notation Meaning
ns number of sensors per group
ng number of groups
Gu the uth group
Ksisj the pairwise key between si and sj
t number of agent pairs between groups
aiuv the i-th agent in Gu for Gv

Auv the set of agents between Gu, Gv

⟨M∥Ksisj ⟩ message M encrypted with key Ksisj

[K\p] p-th share of a secret K
2W / 1W Two-way/one-way path key establishment
k-PR k-path key reinforcement
K→sisj a half of the path key sent from si to sj
K←sisj a half of the path key sent from sj to si

Table 1: Our Notation
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Figure 5: 2W path key establishment in mGKE

Ksisj Ksisj is path key between si, sj
Kq

ij Ksisj is type-q path key, q = 1, 2, 3

c⟨ij⟩ c nodes are seized in the network as a whole
b b of the 2t agents between (Gu, Gv) seized

b⟨ij⟩ same as b, without si or sj being seized.

K̂sisj path key Ksisj between si, sj is stolen

Table 2: Notation
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Figure 6: mGKE (1W k-PR) key stealing resilience
(t = 10, ns = ng = 100). Theory matches simulation
perfectly.
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Figure 7: mGKE (1W k-PR) resilience to key foist-
ing (ns = ng = 100). Theory matches simulation
perfectly.
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Figure 8: Key-foisting resilience: mGKE (2W 1-
PR), mGKE (1W 1-PR), PIKE, GP.
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Figure 9: KF-KS attack in mGKE (2W 1-PR)
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Figure 10: mGKE (2W k-PR) resilience to man-in-the-
middle attack, theory vs. simulation (t = 10, ns = ng =
100)
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(a) t = 15
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(b) t = 20
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(c) t=25
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(d) t = 40

Figure 11: The resilience of mGKE (2W k-PR)
against KF-KS Attacks (t = 15, 20, 25, 40, ns =
100, ng = 100)



(a) Naive scheme.

(b) Message aggregation (2WA).

Figure 12: 2W path-key establishment


